GENOMIC-GUIDED THERAPIES:
CAN WE CURE CARDIOMYOPATHY?

Carolyn Ho, MD
Medical Director, Cardiovascular Genetics Center
Brigham and Women’s Hospital
Associate Professor of Medicine, Harvard Medical School

HEART FAILURE UPDATE 2018—TORONTO
MAY 12, 2018
DISCLOSURES

- Research support from MyoKardia, Inc to fund a patient registry
Curing Genetic Cardiomyopathy:
What Do We Need to Learn?

• How do gene mutations lead to disease?
 ○ Phenotypic spectrum and disease mechanisms
• Why do some patients do poorly and others do well?
• How can disease progression and emergence be prevented?
GENES ➔ PATHOGENESIS ➔ TREATMENT

Genes

Pathogenesis

Treatment

Early/Preclinical HCM
G+/LVH-

Fertilization

Birth

Adolescence+

Identify Early Phenotypes: Isolate changes caused by the mutation from changes related to disease itself

How Do Sarcomere Mutations Lead to HCM?

How can disease progression be interrupted?

Gene mutation introduced

Detectable LVH ➔ Clinical Diagnosis of HCM
How Do Sarcomere Mutations Cause HCM? How Can Disease Progression Be Interrupted?

1. **Sarcomere Mutation**
 - Increased Force
 - MYK-461

2. **Abnormal Calcium**
 - ATP hydrolysis
 - S

3. **Fibrosis**
 - Non-myocyte proliferation and matrix expansion
 - Activate Fibroblasts

4. **Activate TGF-beta**

Teekakirikul P et al. JCB 2012;199:417-421
MYK-461 (Mavacamten): Reduces ATPase and Force

- MYK-461 reduces ATPase rate in myofibrils and cardiomyocytes.
- ATPase rate decreases with increasing [MYK-461] concentration.
- MYK-461 affects ATP binding, ADP release, and actin binding.

Green et al, Science 2016
Early MYK461-Treatment Attenuates Hypertrophy and Fibrosis

Green et al, Science 2016
PIioneer-HCM (Phase 2 Study): Mavacamten (MYK-461)

Reduces LVOT Gradients & Improves Functional Capacity

Clinical Trials
- **EXPLORER**: pivotal study for obstructive HCM
- **MAVERCIK**: non-obstructive HCM
EARLY TREATMENT WITH DILTIAZEM: ATTENUATES LVH AND FIBROSIS (IN MICE)

• Treatment was most beneficial when started before LVH develops
 • Unable to reverse/rescue established disease
• Clinical Implications: Early pharmacologic intervention to improve Ca2+ balance may improve the natural history of HCM

PILOT TRIAL OF DISEASE MODIFICATION: DILTIAZEM VS PLACEBO IN PRECLINICAL (G+/LVH-) HCM

Pilot study: Safety and Feasibility
- Can medications be safely and reliably given to young, otherwise healthy and asymptomatic individuals?
- Can treatment response be detected?
Diltiazem Treatment: Improvement of LV Cavity Size Towards Normal

Population Mean

Wall Stress ~ $P\frac{\text{Thickness}}{\text{Diameter}}$

Lower diastolic pressures needed to fill LV
→ Geometric effects influence diastolic filling

Decrease in Thickness:Diameter Ratio

Ho, et al. JACC:Heart Failure 2015
Genotype May Matter:

More Prominent Treatment Benefit for MYBPC3 Mutations

Similar beneficial patterns seen with: CMR LV mass, serum troponin, E/E’ (p<0.01)

Response to disease-modifying treatment may vary based on genetic background
Disease Modification via Inhibition of TGF-β: Attenuate LVH and Fibrosis

Teekakirikul P, et al. JCI; 2010
Primary Endpoint: Change in LV mass

Mean difference 1 g/m² (95% CL, -3 to 6 g/m²)

p=0.60

- N=133 patients
- Randomized 1:1 to losartan 100 mg daily (n=64), or placebo (69) for 12 months

Conclusions and Future Perspectives

• No significant effect of losartan on LV mass or secondary endpoints in patients with overt HCM
 – Average age 52 years; 33% NYHA II/III

• The observed safety suggests that losartan may be used for other indications in patients with obstructive physiology

• Future studies needed to determine if ARBs can attenuate disease progression in preclinical or earlier stages of HCM
 – Right Patient?:
 • Younger- shorter disease duration, milder/reversible manifestations
 • Sarcomere mutation carriers
 – Right Outcomes?:
 • More dynamic/ responsive phenotypes

HCM♥Net
Multicenter Clinical Network

Phase II Randomized, Placebo-controlled, Double-Blind Clinical Trial of Valsartan for Attenuating Disease Evolution in Early Sarcomeric HCM

1° Analysis Cohort
8-30 years old, NYHA I-II, no obstruction

Exploratory Cohort
G+/LVH-Age 10-25 years

Baseline
- History
- Family History
- Genotype
- PE
- ECG
- Echo
- Biomarkers
- CMR
- CPET

Active Run In
- Titration over 2 week intervals to Goal Dose: Adults: 320 mg/d
- Children ≥35 kg: 160 mg/d
- Children <35 kg: 80 mg/d

STRATIFY
- Pre-pubertal or Post-pubertal*
- NYHA Class I or Class II
- LVWT < or ≥ 14 mm
- Group 1 or Group 2

Randomize
- Valsartan n ~75
- Group 1
- Placebo n ~75
- Group 1

Evaluation at 12 and 24 months
- History
- PE
- ECG
- Echo
- Biomarkers
- CPET and CMR at 24M

1° Composite Outcome
Z-score of change from baseline across domains:
- Myocardial injury
- Hemodynamic stress
- Collagen metabolism
- Functional capacity
- Myocardial fibrosis
- Cardiac morphology
- Cardiac function

2° Endpoints
- Safety
- Clinical outcomes
- Individual components of primary composite outcome
- Quality of Life and Physical Activity
- Alternative assessments of cardiac function
- Interactions with age, genotype, baseline characteristics

Randomization Completed May 2017 (n=178 Primary Analysis Cohort)
Follow-up To Be Completed May 2019

ClinicalTrials.gov Identifier NCT01912534
LMNA Cardiomyopathy

- *LMNA* encodes Lamin A/C which provides structural integrity for the nucleus and plays a role in mechano-transduction and gene expression.
- Highly penetrant.
- Heart block and atrial fibrillation are nearly universal and often present before overt CMP.
- Increased risk for cardiac arrest, heart failure and stroke.
- Gene-specific diagnosis can help guide management.
- Targeted therapies are being studied.

From Neal Lakdawala, MD, BWH
NOVEL THERAPY FOR LMNA HEART DISEASE

- Activation of the p38 MAPK pathway has been established in murine models of LMNA heart disease (e.g. *LMNA*^{H222P})
- Small molecule inhibitors of p38 MAPK have favorably influenced natural history in *LMNA*^{H222P} mice (ARRY-371797)

16 week old LMNA^{H222P/H222P} mice randomized to 4 weeks of placebo or p38 MAPK inhibitor (ARRY-371797)

Choi Sci Trans Med 2012
Wu Bioorg Med Chem 2017
NOVEL THERAPY FOR LMNA HEART DISEASE

- Phase 2 trial of ARRY-797 in patients with heart failure caused by LMNA mutations showed:
 - Improved 6MWT
 - Decreased NT-BNP
 - Stable LVEF
- A phase 3 clinical trial of is pending

Improved functional status in patients with LMNA HF treated with ARRY-797

MacRae CA. Judge DP. Eur Heart J 2016:37;AS 1011
Silencing and Editing HCM Gene Mutations

- Injecting a short fragment of RNA (RNAi) interferes with expression of mutation
 - Expression $\downarrow \sim 30\%$
- Prevented development of HCM in mice
- Genome editing with CRISPR-Cas9
- Germline “correction” of heterozygous *MYBPC3* mutation in zygotes

Summary

• Collaborative basic discovery and clinical translational studies can improve understanding of the molecular basis of genetic cardiomyopathies

• Mechanistic insights can begin to transform management:
 • Develop rational, mechanism-based therapy
 • Identify and target the highest risk cohorts before irreversible changes occur
Human Translational Studies
Allison Cirino
Carolyn Ho
Neal Lakdawala
Calum MacRae
Barbara McDonough
Christine Seidman
Boston Children’s Hospital
Dominic Abrams
Steve Colan
Renee Margossian
Anne Marie Valente
Biostatistics
John Orav

Basic HCM Investigation
Seidman Laboratory
Brigham and Women’s Hospital
Harvard Medical School
J.G. Seidman
Christine Seidman

Euan Ashley- Stanford
Steve Colan- Boston
Sharlene Day- Michigan
Alex Pereira- Incor, Brazil
Iacopo Olivotto- Florence
Michelle Michels- Rotterdam
Gunnar Gunnarson- Iceland
Dan Jacoby- Connecticut

Lee Benson- Washington University
Charlie Canter- Texas Children’s Hospital
Steve Colan- Children’s Hospital, Boston
Sharlene Day/ Mark Russell – Michigan
Jason Becker- Vanderbilt
Kevin Hall- Yale
Harry Lever/ Ken Zahka- Cleveland Clinic
Beth McNally/ Elfi Pahl/ Lubna Choudhury- Northwestern
Amit Patel – University of Chicago
Luisa Mestroni/ Matt Taylor- University of Colorado
Anne Murphy- Johns Hopkins
Anjali Owens/ Joe Rossano- HUP/CHOP
Harry Rakowski- Toronto General Hospital
Alex Pereira- Incor, Brazil
John Lynn Jefferies- Cincinnati Children’s Hospital
Anna Axelson, Henning Bungaard- Rigshospitalet, Denmark