WHY CARDIOLOGISTS MUST CARE ABOUT CANCER IMMUNOTHERAPY

Javid Moslehi, MD
Director, Cardio-Oncology Program
Assistant Professor of Medicine
Vanderbilt School of Medicine
Nashville, TN
Immune-Checkpoint Inhibitor (ICI) Associated Myocarditis: Defining a New Clinical Syndrome

Javid J. Moslehi, M.D.
Director, Cardio-Oncology Program
Assistant Professor of Medicine
Vanderbilt School of Medicine
Nashville, TN
www.cardioonc.org
Disclosures

• Consultation (Paid)
 – Novartis, Pfizer, Bristol-Myers Squibb, Takeda/Millennium, Ariad, Acceleron, Vertex, Incyte, Rgenix, Verastem, Pharmacyclics, StemCentRx, Heat Biologics, Daiichi Sankyo, Regeneron, Myokardia

• Consultation (Not Paid)
 – AbbVie/Abbott, Janssen/J&J, Amgen, Deciphera
 – U.S. Federal and Drug Administration (FDA)

• Research Grants:
 – Pfizer, Bristol-Myers Squibb
Anthracyclines
Radiation
Heart Failure
CAD

Anti-metabolites (5FU)
Ischemia
Vasospasm

Anthracyclines
Radiation
Heart Failure
CAD
Her2 Targeted Therapies
Cardiomyopathy
MEK/RAF TKI
Cardiomyopathy
Drugs Affecting UPS
Immunomodulators (IMiDs): thrombosis
Proteasome inhibitors (e.g. bortezomib, carfilzomib): vascular

Cancer Immunotherapies (Chekpoint Inhibitors) ????
Cancer Survivorship

Antimetabolites (5FU)
Ischemia
Vasospasm

PI3K Inhibitors
Hyperglycemia
Metabolic
?Myocardial/Arrhythmia

CML TKIs
Imatinib: protective
Dasatinib/Nilotinib/
Bosutinib/Ponatinib:
PAH/Vascular/Atherosclerosis

CDK4/6 inhibitors
?Arrhythmia

BTK Inhibitors
Ibrututinib:
Arrhythmia/Atrial Fibrillation

Immune Checkpoint Inhibitors (ICI)
Targeting Immune Checkpoints for Cancer Treatment

- **CTLA-4 Inhibitors**
 - Ipilimumab (Yervoy)

- **PD-1 Inhibitors**
 - Nivolumab (Opdivo)
 - Pembrolizumab (Keytruda)

- **PDL-1 Inhibitors**
 - Atezolizumab (Tecentriq)
 - Durvalumab (FDA breakthrough designation)

- **Combination Therapy**

Cancer immunotherapy-based combination studies underway in 2016

Slide Courtesy of Dr. Jeff Sosman, Northwestern
Immune Checkpoint-Inhibitor (ICI) Associated Myocarditis

• 65 yo F metastatic melanoma (lung, liver, brain, adrenal) presents with chest pain and SOB x 3 days – 12 days after Ipilimumab 3 mg/kg and Nivolumab 1 mg/kg

• Labs Troponin I: 4.72, 9.6, 17, 24.72 – CK: 8178, 16903 – arrhythmias, death

the link between
CANCER
and
CARDIOVASCULAR DISEASE
Step 1- Initial Information (contact form)

Please complete the survey below.

Thank you!

Requesting Physician Information

1) **First Name:**

2) **Last Name:**

3) **Email Address:**

4) **Phone Number:**
 * must provide value

Requested time for call-back (please offer 5, 30-minute time periods.)

5) **Time 1:**

6) **Time 2:**
Rapid Increase in Reporting of Fatal ICI-Associated Myocarditis

- Fatality rates:
 - Anti-PD-1/PD-L1 plus anti-CTLA-4: 78%
 - Anti-PD-1/PD-L1 monotherapy: 42% – p=0.004

Table: Characteristics of patients with immune checkpoint inhibitor associated myocarditis (n=101)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>66</td>
</tr>
<tr>
<td>Cancer</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>40</td>
</tr>
<tr>
<td>NSCLC</td>
<td>30</td>
</tr>
<tr>
<td>Renal</td>
<td>7</td>
</tr>
<tr>
<td>Other*</td>
<td>23</td>
</tr>
</tbody>
</table>

- **Concomitant medications**
 - Aspirin: 11%
 - Statin: 11%
 - Beta blocker: 7%
 - ACE/ARB: 12%
 - Diabetes medication: 6%

- **Regimen**
 - Anti-PD-1 monotherapy: 43%
 - Nivolumab: 43%
 - Pembrolizumab: 15%
 - Anti-PD-L1 monotherapy: 3%
 - Anti-CTLA-4 (Ipilimumab) monotherapy: 5%
 - Combination anti-PD-1/PD-L1 + anti-CTLA-4: 27%
 - Combination anti-PD-1/PD-L1 + other agents: 0%

- **Timing (median, range)**: 25 days (5-120)

- **Concurrent AEs**
 - Myositis/rhabdomyolysis: 25
 - Myasthenia gravis: 10
 - Colitis: 4
 - Severe cutaneous events: 4
 - Other: 5

- **Fatal outcome**: 52

- **Reporting outcome**
 - 2010 – 2014: 3
 - 2015: 6
 - 2016: 45
 - 2017 (through Dec. 6): 76

Cardiovascular Complications of Immune Checkpoint Inhibitors (ICI)

• Myocarditis
• Arrhythmias
 – supraventricular tachycardia
 – atrial fibrillation
• Pericardial disease
 – including pericarditis
• Vasculitis

Salem, Manouchehri, Moey...Johnson, Moslehi. Unpublished.
Fatal Vasculitis in Lung Cancer Patient Treated with anti-PD1 Therapy

perivascular lymphocytic infiltrates

necrotizing vasculitis

Slides courtesy of Dr. Robert Padera, Harvard Medical School.
Immune-Checkpoint Inhibitor (ICI) Myocarditis: Defining a New Syndrome

Clinical Questions
Incidence?
Clinical presentation?
Treatment?

Immune Checkpoint Inhibitor-Associated Myocarditis

Who is at risk?
Precision or Personalized Medicine
- CV risk factors
- Autoimmune risk factors
- Tumor risk factors
- ?Genetic risk factors
T Cell Infiltrates in the Heart

CD3

CD4

CD8

CD20

CD68

CD138

Johnson…Sosman, Moslehi NEJM. 2016.
T Cell Infiltrates in the Skeletal Muscle

Insights into Mechanisms of Toxicity
Insights into Mechanisms of Toxicity

A. Patient 1

Pretreatment Tumor

No. of T-Cell Clones in Tumor

Post-treatment Tumor

No. of T-Cell Clones in Cardiac Muscle

Skeletal Muscle

No. of T-Cell Clones in Cardiac Muscle

A. Inflammatory gene transcripts

B. Muscle-specific gene transcripts

FPKM transcript counts

pre-tx tumor skeletal diseased esophagus normal
Immune-Checkpoint Inhibitor (ICI) Myocarditis: Defining a New Syndrome

Clinical Questions
- Incidence?
- Clinical presentation?
- Treatment?

Immune Checkpoint Inhibitor-Associated Myocarditis

Who is at risk?
- Precision or Personalized Medicine
 - CV risk factors
 - Autoimmune risk factors
 - Tumor risk factors
 - Genetic risk factors

Basic biology of PD-1/PD-L1 in the heart
How does the heart interact with the immune system??
Generation of Mouse Models for ICI-Associated Myocarditis and Vasculitis

Vanderbilt Cardio-Oncology Program
Moslehi Laboratory
Immune-Checkpoint Inhibitor (ICI) Myocarditis: Defining a New Syndrome

Clinical Questions
- Incidence?
- Clinical presentation?
- Treatment?

Immune Checkpoint Inhibitor-Associated Myocarditis

Who is at risk?
- Precision or Personalized Medicine
 - CV risk factors
 - Autoimmune risk factors
 - Tumor risk factors
 - Genetic risk factors

Partnership with...
- Other academic centers
- FDA
- Pharma

Basic biology of PD-1/PD-L1 in the heart
How does the heart interact with the immune system??
?Implications for other forms of myocarditis, cardiac transplant

Moslehi et al, Unpublished.
Conclusions

• Myocarditis is a new clinical phenomenon that is a rare (but clinically significant) complication of cancer immunotherapy
 – Variable presentation
 • myositis with rhabdomyolysis
 – Early progressive and refractory cardiac electrical instability

• Other cardiovascular sequelae (arrhythmia, vasculitis)

• Need for multi-institutional efforts to understand the pathophysiology of myocarditis and multi-pronged (basic, translational, clinical) research approach to understand who is at risk of developing myocarditis and how to diagnose and treat
 – Example of cardioonc.org website
Acknowledgements

Vanderbilt
- Moslehi Laboratory
 - Donald Okoye
 - Joe-Elie Salem
 - Ali Manouchehri
 - Mary Barber
- Clinical Cardio-Oncology
 - Javid Moslehi
 - David Slosky
 - Joe-Elie Salem (Fellow)
 - Wendy Bottinor (Fellow)
 - Kris Swiger (Fellow)
- Brigham and Women’s Hospital
 - Andrew Lichtman
 - Robert Padera
 - Benjamin Olenchock
 - Marc Bonaca
 - Christine Seidman
 - Jon Seidman
- Johns Hopkins
 - Luis Diaz, Jr. (MSKCC)
 - Bob Anders
 - Janis Taube
- Yale
 - Joe Craft
 - Kevan Herold

Brigham and Women’s Hospital
- Andrew Lichtman
- Robert Padera
- Benjamin Olenchock
- Marc Bonaca
- Christine Seidman
- Jon Seidman

Dana-Farber
- George Demetri
 - FDA
 - Laleh Amiri-Kordestani
 - MDA
 - James Allison
 - Spencer Wei

Bristol-Myers Squibb
- Nina Kola
- Gregory Plautz
- Dan Reshef
- Jonathan Deutch
Vanderbilt Cardio-Oncology Program

Clinical Program
Heart Failure
JoAnn Lindenfeld
Thomas Wang
Lynne Stevenson
Genetics
Quinn Wells
Dan Roden
Arrhythmia/EP
Bill Stevenson
Greg Michaud
Roy John
Cardiac Surgery
Ash Shah
Vascular Medicine
Josh Beckman
Esther Kim
Translational Core Lab
Yan-Ru Su

Javid Moslehi
David Slosky
Allen Naftilan
Hank Jennings

Education
Vanderbilt Cardio-Oncology Fellowship
Joe-Elie Salem
Kris Swiger
Wendy Bottinor
Javid.moslehi@vanderbilt.edu

Basic Research Program
Moslehi Laboratory
Donald Okoye
Melissa Moey
Ali Manouchehri
Mary Barber

Translational Research
Thomas Wang
Quinn Wells
Dan Roden

Vascular Biology
David Harrison
Jon Brown
Hind Lal
iPS/Zebrafish
Chaz Hong
Jason Becker
Bjorn Knollmann
Vanderbilt Cardio-Oncology Fellows (2017-2018)

Wendy Bottinor, M.D.
Completed cardiology fellowship at University of Louisville
Funding: T32
Research Focus: Vascular effects of VEGF inhibitors

Joe-Elie Salem, M.D.
Faculty in cardiology and clinical pharmacology, Sorbonne University
Funding: Grant
Research Focus: Basic – Moslehi and Roden Laboratories

Kris Swiger, M.D.
Completing cardiology fellowship at Vanderbilt
Funding: 3rd year
Research Focus: Cardiovascular prevention
Vanderbilt Cardio-Oncology Program

Clinical Program

Heart Failure
JoAnn Lindenfeld
Thomas Wang
Lynne Stevenson

Genetics
Quinn Wells
Dan Roden

Arrhythmia/EP
Bill Stevenson
Greg Michaud
Roy John

Cardiac Surgery
Ash Shah

Vascular Medicine
Josh Beckman
Esther Kim

Translational Core Lab
Yan-Ru Su

Education

Vanderbilt Cardio-Oncology Fellowship
Joe-Elie Salem
Kris Swiger
Wendy Bottinor

Javid moslehi@vanderbilt.edu

Basic Research Program

Moslehi Laboratory
Donald Okoye
Melissa Moey
Ali Manouchehri
Mary Barber

Translational Research
Thomas Wang
Quinn Wells
Dan Roden

Vascular Biology
David Harrison
Jon Brown
Hind Lal

iPS/Zebrafish
Chaz Hong
Jason Becker
Bjorn Knollmann