HDLC AND CELL SIGNALING IN THE HEART: ROLES IN CARDIOPROTECTION

Bernardo Trigatti, PhD
Department of Biochemistry and Biomedical Sciences, McMaster University
Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences
Disclosures

- Past research support from Astra Zeneca Canada Inc
- In kind support (reagents) from Amgen Inc
Learning objectives:

- To review the role of HDL and the HDL receptor SR-B1 in regulating reverse cholesterol transport
- To understand the role of HDL and SR-B1 in protection against atherosclerosis
- To discuss emerging evidence that HDL and SR-B1 mediate direct cardioprotection
Causes of Heart Failure

- Ischemic Heart Disease/
 Coronary artery disease/
 Myocardial Infarction
- Cardiotoxic substances
- Hypertension
- Diabetes
- Valvular disease
- Others
Heart Disease Risk Versus LDL- and HDL-Cholesterol Levels

Incidence of CHD (per 1000 in 6 yrs)

HDL-C (mg/dL)

LDL-C (mg/dL)

<35
35-55
>55
<135
135-154
155-195
>195

124 Suppl. S11-S20
Events in the formation of atherosclerotic plaques

- Monocyte
- LDL
- HDL
- OxLDL
- Foam Cell
- Efflux
- Inflammation
- Migration
- Apoptosis
- Rupture/thrombosis

EC

SMC
Scavenger Receptor Class B, Type 1: SR-B1

SR-B1 Knockout in Mice Increases HDL Cholesterol and Reduces Cholesterol in Bile

Atherosclerosis in SR-B1/LDL R dKO Mice Fed Atherogenic Diets

<table>
<thead>
<tr>
<th>Diet</th>
<th>Fat Content</th>
<th>Cholesterol Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFCC</td>
<td>15%</td>
<td>1.25% Cholesterol, 0.5% Cholate</td>
</tr>
<tr>
<td>HFC</td>
<td>15%</td>
<td>1.25% Cholesterol</td>
</tr>
<tr>
<td>HC</td>
<td>2%</td>
<td>Cholesterol</td>
</tr>
<tr>
<td>Normal</td>
<td>6%</td>
<td>Fat, traced cholesterol</td>
</tr>
</tbody>
</table>

Fuller et al 2014 ATVB 34:2394-403

Mark Fuller
Atherosclerosis in Aortic Sinuses of SR-B1/LDL R dKO Mice Fed Atherogenic Diets

Fuller et al 2014 ATVB 34:2394-403
Atherosclerosis in Coronary Arteries of SR-BI/LDL R dKO Mice Fed Atherogenic Diets

15 % Fat, 1.25 % Cholesterol, 0.5 % Cholate; 3.5 weeks

Fuller et al 2014 ATVB 34:2394-403
Cardiac Fibrosis in SR-B1/LDLR dKO Mice Fed Atherogenic Diets

15 % Fat, 1.25 % Cholesterol, 0.5 % Cholate; 3.5 weeks

Fuller et al 2014 ATVB 34:2394-403
Doxorubicin Induced Cardiotoxicity

Doxorubicin

Apoptosis

Tumor

Heart

Heart Failure
Doxorubicin Induced Cardiotoxicity - *In Vitro*
HDL Protects Cultured Cardiomyocytes against Doxorubicin-Induced Apoptosis

Kristina Durham
HDL Induces Akt Phosphorylation in Cardiomyocytes in an SR-B1 Dependent Manner

Kristina Durham
In Vivo Repeated Doxorubicin Exposure Model

1. ApoA1+/+ vs ApoA1Tg/Tg

2. SR-B1-/- ApoA1+/+ vs SR-B1-/- ApoA1Tg/Tg

Kristina Durham

ApoA1 Overexpression Protects WT Mice Against Dox-Induced Cardiomyocyte Apoptosis In Vivo

Saline

DOX

ApoA1 +/+

ApoA1 Tg/Tg

TUNEL

Cardiac TnT

DAPI

50μm

% TUNEL Positive Cardiomyocytes

Saline

DOX

ApoA1 +/+

ApoA1 Tg/Tg

Kristina Durham

ApoA1 Overexpression fails to Protect SR-B1-KO Mice from Dox-Induced CM Apoptosis In Vivo

HDL Protects Against Dox-induced Cardiac Dysfunction in WT but not SR-B1-KO Mice

Kristina Durham

SR-B1 Mediated HDL Signaling in the Heart

- HDL
- SR-B1
- Src
- PDZK1
- S1PR1
- Gαi
- PI3K
- Akt 1
- Cell Death
Acknowledgements

Present
Christine Bassila
Kevin Chathely
Yak David Deng
Anwar Hossain
Samuel K Lee
Alexander Qian
Narmadaa Thyagarajan
Ting Xiong
Dexter Choi
Anna Lee
Naveen Sandhu
Stephanie Skanes

Past
Aishah Al-Jarallah
Kristina Durham
Mark Fuller
Leticia Gonzalez Jara
Pei Yu

Mice
Monty Krieger, MIT

Collaborators
Rick Austin (McMaster)
Sarka Lhotak
Suleiman Igdoura (McMaster)

Mansoor Husain (Toronto General Research Institute)
Abdul Momen

Richard Lehner (U. Alberta)
James M Curtis (U. Alberta)
YuanYuan Zhao

Funding

CIHR

IRSC

HEART & STROKE FOUNDATION
Finding answers. For life.