GENES TO GENOMES: EVOLUTION OF MOLECULAR TESTING FOR INHERITED CARDIOMYOPATHY

Birgit Funke, PhD, FACMG
Vice President Clinical Affairs,
Veritas Genetics
Associate Professor of Pathology,
Harvard Medical School/MGH
Boston, MA
FROM GENES TO GENOMES - EVOLUTION OF MOLECULAR TESTING FOR INHERITED CARDIOMYOPATHIES

Heart Failure Update 2018 - Toronto

Birgit Funke, PhD, FACMG
Associate Professor of Pathology (part-time), Harvard Medical School
Vice President of Clinical Affairs, Veritas Genetics
Employed at Veritas Genetics and Harvard Medical School
WHAT WILL BE COVERED?

• Brief overview of inherited cardiomyopathies

• A decade of clinical genetic testing – lessons learned

• Ensuring clinical validity: which genes should be tested?

• From reaction to prevention – are we ready for predictive testing?
THE MAIN INHERITED CARDIOMYOPATHIES

- **DCM**: Dilated
- **HCM**: Hypertrophic
- **ARVC**: Arrhythmogenic right ventricular

- Collective incidence (idiopathic): > 1/500
- Can lead to SCD

- Substantial genetic component
- Incentive for predictive testing

Maron et al. Circulation. 2007: Causes of SCD in 1435 young competitive athletes
AFFECTED CELLULAR STRUCTURES

Most commonly affected structure: SARCOMERE
(contractile unit of the muscle)

Dunn 2013: Circ Cardiovasc Genet.
WHEN AND WHY TEST FOR GENETIC VARIANTS?

When symptomatic
• Establish/confirm clinical Dx
• Family testing: release mutation NEG members from clinical screening
• Treatment (e.g. Fabry disease as phenocopy, ERT exists)

Before the onset of symptoms
• Reduce adverse outcomes or prevent disease
HISTORY OF GENETIC TESTING FOR CARDIOMYOPATHY

Adapted from: Maron 2012, JACC 60:715
A DECADE OF GENETIC TESTING
WHAT HAVE WE LEARNED?
GENETIC HETEROGENEITY + MODERATE DETECTION RATES

HCM
- 32% POS (n~3,000)
- 2 genes (MYBPC3, MYH7) = ~80%

Alfares 2015, Genet in Med

DCM
- ~37% POS (n~800)
- 1 predominant gene (TTN): 14%
- No other gene >5%

Pugh 2014, Genet in Med
MANY VARIANTS ARE UNIQUE

Hypertrophic Cardiomyopathy
~3,000 probands tested at the laboratory for Molecular Medicine

63% seen only once

Very few recurring variants...
Proband with clinical Dx + FHx of DCM

DCM testing inconclusive

Dx revised to ARVC

ARVC panel: positive

~3% of DCM patients carry a pathogenic variant in an ARVC gene

Traditional testing does not make sense for disorders with clinical overlap
MULTI DISEASE TESTING FACILITATES DIAGNOSIS

• Original clinical definition based on most severe cases

• Too narrow, full range of clinical variability emerged over time
INCREASING NUMBERS OF PUBLISHED DISEASE GENES

- >60 DCM genes
- >50 HCM genes
LARGE GENE PANELS – TROJAN HORSES

% inconclusive
~10 % ➔ ~60%

% positive
~10 % ➔ ~37%

Pugh et al. 2014
MORE = BETTER?

Use in clinical practice

PANELS

EXOME

GENOME

2018
CLINICAL VALIDITY

WHICH GENES SHOULD BE ON A PANEL?
CLINICALLY OFFERED GENE PANELS ARE EXTREMELY VARIABLE

Hypertrophic Cardiomyopathy

Which one should one order??

Genetic Testing Registry (Jan 2016), representative HCM panels

- Other
- Other syndromic (RASopathy)
- Storage cardiomyopathy
- Sarcomere (≥ 1% detection rate*)
THE CLINICAL GENOME RESOURCE (ClinGen) STANDARDS FOR ASSESSING CLINICAL VALIDITY

ClinGen’s Critical Questions:
- Is this gene associated with a disease? Clinical Validity
- Is this variant causative? Pathogenicity
- Is this actionable? Clinical Utility

Curated & Medically Relevant Knowledge
- ClinVar & Other Resources

Improved Patient Care Through Genomic Medicine

MANY PUBLISHED GENE-DISEASE ASSOCIATIONS ARE INSUFFICIENTLY SUPPORTED

Jodie Ingles..... Birgit Funke (HCM gene curation expert panel): in preparation
EVIDENCE BASED TEST CONTENT SELECTION

- Currently, labs choose content
- Need professional society guidance
- Need regulatory enforcement
WHEN AND WHY TEST FOR GENETIC VARIANTS?

When symptomatic
• Establish/confirm clinical Dx
• Family testing: release mutation NEG members from clinical screening
• Treatment (e.g. Fabry disease as phenocopy, ERT exists)

Before the onset of symptoms
• Reduce adverse outcomes or prevent disease

Today

Future

Not as easy as it seems
The promise and peril of genomic screening in the general population

Michael C. Adams, MS¹, James P. Evans, MD, PhD¹, Gail E. Henderson, PhD², Jonathan S. Berg, MD, PhD¹; GeneScreen Investigators
SUMMARY

• Inherited cardiomyopathies have a strong genetic etiology

• Potentially severe outcomes (SCD) provide a strong incentive for genetic testing of presymptomatic family members

• All cardiomyopathies are genetically and clinically heterogeneous

• Multi-disease (“pan-cardiomyopathy”) testing is useful and feasible, moving quickly towards exome/genome testing as a first line test

• More is not better: Literature contaminated with many insufficiently supported gene-disease association claims

• Clinical testing gene panels are not standardized, expert guidance needed!

• Predictive testing in healthy populations starting to be discussed – but insufficient understanding of the penetrance of cardiomyopathy variants in unaffected individuals…
ACKNOWLEDGMENTS

ClinGen Leadership and Coordinators

HCM Gene Curation Committee

Cardiomyopathy Variant Curation Expert Panel

Laboratory for Molecular Medicine
THANKS!